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ABSTRACT: Breast mass detection is a challenging task in mammogram, since mass is usually embedded 

and surrounded by various normal tissues with similar density. Recently, deep learning has achieved impressive 

performance on this task. However, most deep learning methods require large amounts of well-annotated 

datasets. Generally, the training datasets is generated through manual annotation by experienced radiologists. 

However, manual annotation is very time-consuming, tedious and subjective. In this paper, for the purpose of 

minimizing the annotation efforts, we propose a novel learning framework for mass detection that incorporates 

deep active learning (DAL) and self-paced learning (SPL) paradigm. The DAL can significantly reduce the 

annotation efforts by radiologists, while improves the efficiency of model training by obtaining better 

performance with fewer overall annotated samples. The SPL is able to alleviate the data ambiguity and yield a 

robust model with generalization capability in various scenarios. In detail, we first employ a few of annotated 

easy samples to initialize the deep learning model using Focal Loss. In order to find out the most informative 

samples, we propose an informativeness query algorithm to rank the large amounts of unannotated samples. 

Next, we propose a self-paced sampling algorithm to select a number of the most informative samples. Finally, 

the selected most informative samples are manually annotated by experienced radiologists, which are added into 

the annotated samples for the model updating. This process is looped until there are not enough most 

informative samples in the unannotated samples. We evaluate the proposed learning framework on 2223 

digitized mammograms, which are accompanied with diagnostic reports containing weakly supervised 

information. The experimental results suggest that our proposed learning framework achieves superior 

performance over the counterparts. Moreover, our proposed learning framework dramatically reduces the 

requirement of the annotated samples, i.e., about 20% of all training data. 
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I. INTRODUCTION 
Breast cancer is the most frequently diagnosed cancer and cause of cancer deaths among women 

worldwide. As American Cancer Society’s report in 2017, there were an estimated 252,710 new cases of 

invasive breast cancer, 63,410 new cases of breast carcinoma in situ, and 40,610 breast cancer deaths among US 

women [1]. Early and timely detection can lead to a greater range of treatment options to control the 

development of breast cancer and significantly reduce the mortality. Mammography remains the mainstay of 

population-based breast cancer screening exam, which can identify more in situ lesions, smaller invasive 

cancers than other screening methods [2], such as MRI and ultrasound. Mass is the most common type of 

abnormality in mammogram, and usually appears in relatively dense region. For decades, a range of computer 

aided diagnosis (CAD) systems designed hand-crafted image features for breast mass detection, by exploiting 

the properties of shape, size, gradient and texture [3]. However, quite a number of masses are missed and a 

significant number of false positive tissues are detected, since mass is usually embedded and surrounded by 

various normal tissues with similar density. Therefore, breast mass detection is still a challenging task. 
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Recent years, deep learning has achieved impressive break-throughs in various image analysis tasks. 

For example, Long et al. [4] proposed the fully convolutional networks (FCN) for image segmentation, which 

token an input image of arbitrary size and produced prediction of spatial density with a same size. 

By adapting the structure of FCN, Ronneberger et al. [5] pro-posed U-Net for medical image analysis, 

which added successive upsampling layers and more skip connections between selected layers. Different from 

conventional approaches, deep learning approaches automatically learn the optimized features from the raw 

image, based on the objective functions and the supervised information. As well known, most deep learning 

approaches require large amounts of well-annotated datasets to optimize the model. The medical image datasets 

are generated through manual annotation by experienced radiologists. However, there are many difficulties in 

manual annotation: (1) Manual annotation is very time-consuming, tedious and subjective; (2) We can collect a 

large mount of data but cannot find resource to annotate them, it is costly to recruit experienced radiologists to 

annotate large amount of data; (3) The variation of annotation from differ-ent experienced radiologists. 

Therefore, acquiring well-annotated medical image datasets is the primary challenge. 

In practical applications of mass detection, there are large amount of the unannotated samples which 

usually accompany with weakly supervised information. Active learning (AL) is promising to address the 

problem that the well-annotated sam-ples are scarce but the unannotated samples are sufficient. Specif-ically, 

the active learning is an iterative learning method that involves searching for the most informative unannotated 

samples by query algorithm, selecting them for manual annotation by experienced radiologists, then using the 

newly annotated samples to update the model at each round. Unlike the conventional supervised learning 

method, AL employs only a small part of samples that contain the most informative patterns. It can signif-

icantly reduce the annotation efforts by experienced radiologists, while improves the efficiency of the model 

training by obtain-ing better performance with fewer overall annotated samples. Obviously, the query algorithm 

is the key factor in AL, which is typically performed based on the uncertainty and diversity of samples. The 

samples with higher uncertainty or unique charac-teristic generally implicate more informativeness for the 

model updating. Therefore, searching the most informative samples from the unannotated samples is the 

primary challenge in AL. Besides, the sampling process changes the distribution of the datasets, where the hard 

samples account for a higher rate in the most informative samples, especially the mass is embedded inside the 

dense normal tissues in the dense mammograms. Therefore, robustly learning from hard examples (i.e., 

alleviating the data ambiguity) is another challenging task in AL. 

In the course of human learning, humans usually use current experiences to learn new knowledge and rely on 

the obtained knowledge to accumulate experiences. This interactive process carries out from easy knowledge to 

complex knowledge gradu-ally, also termed as ‘easy-to-hard’ strategy. Inspired by human being’s learning 

process, the self-paced learning (SPL) paradigm simulates this process [6,7], in which a model gradually incor-

porates easy samples to complex samples into training and thus achieves a more superior model through the 

constant accumu-lation. It is able to alleviate the data ambiguity and yield a robust model with generalization 

capability in various scenarios. Intuitively, the criteria of complexity is the key factor in SPL. In this recently 

rising field, latest studies show the potential of SPL [8–10]. 

Based on the above motivations, we propose a novel learn-ing framework for breast mass detection that 

incorporates deep active learning (DAL) and self-paced learning (SPL) paradigm. The DAL denotes the 

collaboration of deep learning and active learning. Specifically, our proposed learning framework addresses the 

following challenges: (1) learning more effective feature rep-resentation from only a few of overall annotated 

samples, and minimizing the annotation efforts by experienced radiologists; 

(2) efficiently finding out the most informative samples from the unannotated samples; (3) robustly 

learning from hard examples (i.e., alleviating the data ambiguity). This work includes the fol-lowing major 

contributions: First, we develop a novel interactive learning framework for breast mass detection, which 

provides an efficient learning strategy to obtain better performance with minimum annotation efforts; Second, 

we develop a novel infor-mativeness query algorithm for DAL, which finds out the most informative samples 

via considering the uncertainty and diversity simultaneously; Third, we develop a novel self-paced sampling 

algorithm (i.e., ‘easy-to-hard’ strategy) for SPL, which selects a number of the most informative samples on the 

bias of com-plexity and pace. In detail, we first employ a few of annotated easy samples to initialize the deep 

learning model (i.e., FCN) using Focal Loss. In order to find out the most informative samples, we employ the 

proposed informativeness query algorithm to rank the large amounts of unannotated samples. Next, we employ 

the proposed self-paced sampling algorithm to select a number of the most informative samples. Finally, the 

selected most informa-tive samples are manually annotated by experienced radiologists, which are added into 

the annotated samples for the model up-dating. This process is looped until there are not enough most 

informative samples in the unannotated samples. 
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II. RELATED WORK 
In this section, we briefly review the latest developments on breast mass detection, active learning and 

self-paced learning respectively. 

 

Breast mass detection. The conventional mass detection methods depend on the combination of hand-craft 

features and specific classifiers. Oliver et al. [3] provided a quantitative com-parison for various conventional 

mass detection methods, and analyzed the advantages and disadvantages of the used strategies qualitatively. The 

latest developments tend to employ deep learn-ing techniques for detecting, segmenting and classifying breast 

masses from mammogram. Generally, the deep learning methods achieve superior performance over the 

conventional methods. For example, Arevalo et al. [11], Kooi et al. [12] and Dhungel et al. [13] proposed staged 

optimizing strategies for mass classification in their studies, respectively. In the features representation stage, 

they employ deep learning techniques to automatically extract discriminative features and investigate extent 

hand-crafted fea-tures complementally. In the classification stage, all the features are fed into classifiers to make 

final decision. However, the staged optimizing strategies are inefficient. By making use of the state-of-the-art 

object detection method, Ribli et al. [14] proposed a CAD system for mass detection based on Faster R-CNN 

[15]. This deep learning framework is appropriate for simultaneously de-tecting, localizing and classifying large 

objects in high definition and contrast natural images. Al-masni and Al-antari et al. [16,17] proposed a CAD 

system for mass detection based on You Only Look Once (YOLO), a ROI-based Convolutional Neural Network 

(CNN). The YOLO-based CAD system can handle detection and classification simultaneously in one 

framework. However, there are still several limitations of directly applying Faster R-CNN or YOLO for mass 

detection in mammogram. The object detection methods locate the key points on the small-scale feature maps, 

and then use multiple scale boxes to generate region proposals on the original image. The region proposals are 

used for classification in subsequence, thus the boxes cannot be too small. Therefore, the object detection 

methods cannot accurately detect the small lesions. Recently, many FCN variations has been proposed for lesion 

detection tasks via incorporating with lesion segmentation task in medical images [18–23]. For example, the U-

Net, i.e., a variation of FCN, employs skip connections in its architecture to acquire detailed information from 

low-level large-scale feature maps, which can improve the recognition capability of small lesions. These studies 

suggest that FCNs have potential to achieve promising performance in mass detection. 

 

Active learning. The active learning (AL) paradigm focuses on actively selecting the most informative samples, 

in order to learn better feature representation from only a few of overall annotated samples and to minimize the 

annotation efforts. The key factor of AL is the sample selection criteria, which usually relies on the 

measurement of uncertainty and diversity. The uncertainty aims to reduce the expected error of model [24], thus 

the large amounts of unannotated samples are ignored due to their rela-tively far away from the decision 

boundary. The diversity [25– 27] aims to enrich the feature representation of model and to enhance the generally 

discriminative capability, thus the repre-sentatively diverse samples are worthy to be selected. Recently, many 

latest studies [28–31] employ AL in various scenarios of image analysis, and investigate more effective sample 

selection criteria. In medical imaging community, there come up a lot of impressive studies [32–36] that employ 

AL to tackle the problem of scarce well-annotated medical samples. For example, Melendez et al. [32] proposed 

a lesion detection framework by embedding a multiple instance learning (MIL) classifier within AL. To 

minimize the annotation efforts, meaningful lesion regions are selected with the help of AL. Because many 

latest developments employ deep learning techniques to collaborate with AL [34,35,37,38], these frameworks 

are also termed deep active learning (DAL). 

 

Self-paced learning. At the beginning, Bengio et al. [6] in-troduced the concept of curriculum learning, in 

which a model mimics human being’s learning process by gradually accumulat-ing knowledge from easy to 

complex. To make it more imple-mentable, Kumar et al. [7] formulated this learning philosophy as an explicit 

paradigm named self-paced learning (SPL). The SPL paradigm is able to alleviate the data ambiguity and guide 

a robust learning manner in complex scenarios. For example, Sangineto et al. [8] employed the SPL to select the 

highest-confidence bounding boxes as pseudo-ground truth in a weakly-supervised scenario of object detection. 

Specifically, this training strategy discarded noisy training bounding boxes and progres-sively trained a Fast R-

CNN [39] using the most likely bound-ing boxes. Zhang et al. [9] also employed SPL to collaborate with 

multiple instance learning (MIL) in the co-saliency detection framework. Besides, Lin et al. [10] developed a 

cost-effective deep learning framework for face identification, by combining the active learning (AL) and the 

self-paced learning (SPL). The framework investigates the resolution of automatically annotat-ing new instances 

and incorporating with SPL under the weak expert recertification. 

 

 

 



Detection from the digitized X-ray mammograms based on the deep active learning 

73 

III. METHODOLOGY 
In this section, we first illustrate our learning framework and explain the mechanism. Next, we 

introduce the deep learning model in the learning framework. Finally, we specifically describe the proposed 

informativeness query algorithm and self-paced sampling algorithm, which are the key factors in the learning 

framework. The workflow of our learning framework is demon-strated in Fig. 1. 

 

3.1. Mechanism of learning framework 

The learning framework includes the following steps: Training Initial model, Predicting unannotated 

samples, Selecting informa-tive samples, Manual annotation, Updating model. Except the first step of Training 

Initial model, the learning framework iteratively alternates among the other steps. This iterative learning pro-

cess is looped until there are no more informative samples in unannotated samples, e.g., less than 2% of the 

annotated samples. 

For convenient presentation, we define the following notation. At denotes the annotated samples and Ut 

denotes the unanno-tated samples at the round t. Specifically, A0 and U0 denote initial annotated samples and 

initial unannotated samples, respectively. D denotes the overall training dataset in our learning framework, 

where D = Ut ∪ At and Ut ∩ At = Ø. It denotes the set of most informative samples which are selected at the 

round t. Obviously, the annotated samples At increase gradually and the unannotated samples Ut decrease. For 

the purpose of minimizing the annotation efforts, the final annotated samples Ac should much less than the 

overall training dataset D. 

 

Training Initial model: At the beginning, a few of easy samples are annotated by experienced radiologists for 

initializing the deep learning model F0 (i.e., FCN). Specifically, we randomly select a few of samples that have 

significant visual characteristics of mass and convinced abnormal mass descriptions in their diag-nostic reports. 

Obviously, these samples are easy to be annotated, i.e., initial annotated samples A0. Additionally, we employ 

Focal Loss [40] in the deep learning model to further improve the performance. 

 

Predicting unannotated samples: At the round t, we apply the current deep learning model to predict the 

unannotated samples Ut , and then generate a set of heatmaps. The large amounts of unannotated samples U t 

accompany with diagnostic reports, in which non-uniform analysis and diagnosis (i.e., weakly supervised 

information) are given by different clinicians. 

 

Selecting informative samples: We rank the unannotated sam-ples Ut using the proposed informativeness 

query algorithm, which estimates the informativeness of samples via considering the uncertainty and diversity of 

samples. The uncertainty is measured from the predicted heatmaps and weakly supervised information. The 

diversity accounts for the uniqueness and rep-resentativeness property among samples. Then, we can find out 

the most informative samples based on the ranking. We employ the self-paced sampling algorithm to select a 

number of the most informative samples It . The self-paced sampling algorithm tends to preferentially select the 

‘easy’ samples, by considering the complexity of samples. 

 

Manual annotation: The selected most informative samples It are annotated manually by experienced 

radiologists. Specifically, with the help of the diagnostic reports, a group of experienced radiologists manually 

draw the contours of masses on the mam-mograms and assign the convinced confidence. Then, we can convert 

the contours into annotated masks. After the manual annotation, the annotated samples are extended, and the 

newly annotated samples are removed from the unannotated samples. 

 

Updating model: The extended annotated samples are used to update the deep learning model, and then the 

updated deep learning model Ft is used in the next round. 

 

3.2. Deep learning model 

In our proposed learning framework, we employ an end-to-end and pixels-to-pixels deep learning 

model, named fully convo-lutional networks (FCN) [4]. Formally, FCN transfers classification tasks to 

segmentation tasks by reinterpreting classification net-works as fully convolutional and fine-tuning from their 

learned representations. We employ the VGG-16 [41] as the backbone of FCN. Besides, FCN applies transpose 

convolution, upsampling and skip connection of feature maps in the decoder to make the output regains the 

same size as input. For its specific architec-ture, the FCN achieves a nonlinear and local-to-global feature 

representation that embeds the low-level visual features and the 
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Fig. 1. The workflow of our proposed learning framework. Step 1. Training Initial model: a few of annotated 

easy samples are employed to initialize the deep 

 

learning model using Focal Loss. Step 2. Predicting unannotated samples: applying the current deep learning 

model to the unannotated samples would generate a set of heatmaps. Step 3. Selecting informative samples: 

we employ informativeness query algorithm and self-paced sampling algorithm to select a number of the most 

informative unannotated samples. Step 4. Manual annotation: the selected unannotated samples are annotated 

manually by experienced radiologists, thus the annotated samples are extended. Step 5. Updating model: the 

extended annotated samples are used to update the deep learning model, and then the updated deep learning 

model is used in the next round. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The architecture of FCN in our learning framework. The output of FCN is heatmap. 
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high-level semantic features. As shown in Fig. 2, the output of FCN is heatmap, in which the value of each pixel 

indicates the probability that the corresponding pixel belongs to mass lesion. 

Assuming a grayscale image I with pixels p = (px, py) and intensities I(p) ∈ V on a discrete grid X × Y , where V 

is the discrete domain of intensity, such as [0, 255]. Additionally, the annotated mask M of this image is 

available, its pixels correspond to semantic binary class labels M(p) ∈ ξ, where ξ = {0, 1}. The training of FCN 

is to learn the parameters {w, b} of mapping 

 

                     

function F. The heatmap T (p) can be calculated by    

batch size is set as 4. The training procedure 
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               (

1

) 
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In the mass detection task, the class imbalance 

between fore-                        

ground and background is extreme that the mass 

lesions in fore- 3.3.1. Informativeness query algorithm 
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machine learning 
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FCN. Formally, focal  
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form, which reduces the relative loss for well-
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the expected 
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error of the updated model. Because the 

diagnostic reports (i.e., 
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Assuming CE(·) is cross entropy loss, where 
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To train the FCN, we employ Adam [42] 
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Fig. 3. There are four annotated samples and their diagnostic reports. The orange contours are manually 

annotated by experienced radiologists. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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The proposed informativeness query 

algorithm considers both 
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the uncertainty and the diversity In this situation, we introduce the complexity ci as the 
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simultaneously. We further sampling 

define the informativeness QAi
t
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the uncertainty measurement. We propose the self-paced sampling algorithm 

UCi
t
  and the diversity DSi

t
 . The 

informativeness QAi
t
  measures 

to select a number of the most informative samples. 

Obviously, 

how informative the unannotated sample can 

provide to current 

the complexity is strongly correlated with the weakly 

supervised 

model. The informativeness QAi
t
 can be 

calculated by 

information. The more convinced supervised information 

signifies 

QAi
t = η ∗ UCi

t
 + (1 − η) ∗ DSi

t
 , (13) 

the lower complexity, thus the possibility of being selected vi 

increases with the lower complexity  

limci→0 vi   =  1. As 

the 

where η ∈ (0, 1) is t 
a coefficient to weight the 

uncertainty UCi
t 

aforementioned weakly supervised information Si(p), we 

define 

and the diversity 

DSi 

. Specifically, the more 

unannotated samples the complexity ci ∈ [0, 1] as       

Ut  should be assigned smaller η to emphasize 

the generally 1    

Si(p) = 

τi    

(p
+
), 

  

discriminative capability. According to the 

informativeness QAi
t
 , 1 − ci ∝ 

 

 p 

  

p+ Si 

 

(15) N  N  

the unannotated samples can be ranked and the 

most informative    ∑     ∑       

top kt samples are obtained.     

where τi denotes a normalization factor. This definition 

indicates 

                      

that more convinced weakly supervised information 

corresponds 

3.3.2. Self-paced sampling algorithm  to more ‘easy’ samples. For convenience, we take a binary of 

 

Kumar et al. [7] formulated the philosophy of 

self-paced learn- 

vi  ∈ {0, 1} by a probability sampling function P(·). Then, the 

vi 

ing (SPL), which employed a ‘easy-to-hard’ 

strategy to facili- can be written by           

tate learning. This strategy preferentially selects 

‘easy’ samples 

vi = P(1 − ci, ζ ). 

         

(16) 

that have high confidence. Formally, Jiang [43] 

provided more          

comprehensive understanding of SPL as a 

general optimization As definition of ζ 

in Eq. (14), the learning pace parameter ζ 

in 

proble

m                  

Eq. (16) states that we should incorporate more hard samples 

for 

      n                training when the learning pace gets larger. Therefore, 

min     v 

L(

w 

; xi 

, y ) 

+ 

r(v 

; 

ζ ), (14) 

lim   vi 

 

1, i 

 

1, . . . , n . 

   

(17) 

w,

v 

∈

[ 

0,

1 ] n i  i     i      = ∈ {    

      =                                

                                    

 

In brief, we first employ the informativeness query algorithm to find out the most informative samples, 

then employ the self-paced sampling algorithm to select a number of relatively easy samples from the most 

informative samples. When the round t increases, the most informative samples will be less and less, while the 

self-paced sampling algorithm will select higher pro-portion of the most informative samples. 

 

IV. EXPERIMENTS 
4.1. Datasets 

We employ a database with 2,223 standard full-field digital mammograms (FFDM), which are 

accompanied with diagnostic reports. These mammograms are chose on the basis of suspicious mass 
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descriptions in diagnostic reports. All the mammograms come from four standard views: a cranial-caudal (CC) 

view and a mediolateral-oblique (MLO) view, from both the left and right breasts. We collect the database from 

the First People’s Hos-pital of Xiang Yang, Affiliated Hospital of Hubei University of Medicine. These 

mammograms are acquired using 2 kind of FFDM devices from different manufacturers (i.e., Planmed Nuance 

and IMS Giotto) with spatial resolution of 85 µm/pixel. 

We randomly split the database into a training dataset with 1,912 mammograms and a test dataset with 

311 mammograms. The training–test ratio of our database is approximately equal to the training–test ratio of the 

DDSM [44] dataset. Based on the philosophy of our learning framework, only a small part of samples in the 

training dataset are selected for manual annota-tion. Specifically, the initial annotated samples A0 contain 220 

‘easy’ mammograms, thus the initial unannotated samples U0 contain 1,692 mammograms. Four annotated 

samples and their diagnostic reports are demonstrated in Fig. 3. Besides, the process of the manual annotation 

by experienced radiologists conforms to the standardized specifications of the public INBreast [45] dataset. In 

order to guarantee the consistent, the annotations are consulted by 5 experienced radiologists. 

As the related works for mass detection [3,12,13], the most appropriate metric for lesion detection 

evaluation is FROC [46] curve. FROC curve is defined as the plot of true positive rate (i.e., TPR, recall) versus 

the average number of false positives per image (FPI) at multiple thresholds, where the IoU is set as 0.2. The 

true positive rate (TPR) represents the accuracy of mass, and the average number of false positives per image 

(FPI) represents the average number of misclassified normal tissues in each image. We further employ the true 

positive rate (TPR) at given false positives per image (FPI) as another metric, such as TPR@2.0FPI. In addition, 

we calculate the partial area under the FROC curve (PAUC) to further investigate the difference quantitatively. 

For convenient comparison, we choose a fixed FPI range of [0.5, 2.0] to calculate the PAUC in the FROC curve. 

Because the TPR is close to saturation when the FPI is greater than 2.0, and the threshold is close to 1 when the 

FPI is less than 0.5. 

The experiments are implemented on a workstation with 6 CPU cores and 2 NVIDIA TESLA P40 

GPUs, each GPU has 24GB memory. We employ Keras [47] with the TensorFlow [48] backend as our deep 

learning framework. 

 

4.2. Comparison between focal loss and cross entropy 

Experiments have been conducted to compare the focal loss (FL) and cross entropy (CE). We employ 

the initial annotated samples to train two models, which have the same network architecture but different loss 

functions, i.e., focal loss (FL) and cross entropy (CE). Then, we evaluate these models on the test dataset. Fig. 4 

shows the heatmaps and overlays of a test samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The heatmaps and overlays of a test samples. In subfigure c and d, the orange counters denote the manual 

annotations and the red counters denote the predicted suspicious mass lesions using the default threshold of 0.5. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

As shown in Fig. 4, the heatmap of FL pays more attention to the more hard regions, where the 

confidence in the heatmap aggregates in the moderate threshold range. In the contrary, the heatmap of CE tends 

to predict high confidence (i.e., 0 or 



Detection from the digitized X-ray mammograms based on the deep active learning 

81 

1) for these regions, but could lead to more misclassification. The suspicious mass lesions can be detected 

by taking different thresholds for binarization, Fig. 4(c) and Fig. 4(d) demonstrate the suspicious mass lesions 

(red color) predicted by two models using the default threshold of 0.5, respectively. For this sample, two models 

all recall the suspicious mass lesions, but the under suspicious mass lesion predicted by the model with CE is 

much less than the manual annotation. In other words, the model with FL provides more robust performance 

than the model with CE. 

The FROC curves of this comparison are shown in Fig. 5. Obviously, we can observe that the model 

with FL outperforms the model with CE. At the same FPI range of [0.5, 2.0], the two models obtain 0.8515 

PAUC, 0.8780TPR@2.0FPI and 0.8398 PAUC, 0.8780TPR@2.0FPI, respectively. Although the model with FL 

presents better PAUC performance, it still remains a weakness that the predicted suspicious mass lesions could 

be much larger than manual annotations in lower thresholds. As the FROC ten-dency of the model with FL in 

Fig. 5, the TPR tends to saturation and even suffers a little degradation in lower thresholds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Performance comparison between the models with focal loss (FL) and cross entropy (CE). 

 

 

4.3. Evaluations of informativeness query algorithm 

In practice, the informative samples from the unannotated samples can be grouped into 4 clusters 

qualitatively by informa-tiveness query algorithm, e.g., ‘mismatching’, ‘none-recall’, ‘lower-recall’, ‘over-FP’. 

In the ‘mismatching’ cluster, the mass lesions are not recalled and a number of false positive regions are 

recalled. In the ‘none-recall’ cluster, neither mass lesions nor false positive regions are recalled. In the ‘lower-

recall’ cluster, the mass lesions are located but the recalled regions are only a small part of mass lesions. In the 

‘over-FP’ cluster, the mass lesions and a number of false positive regions are recalled. According to the Eq. 

(11), the samples in ‘mismatching’ and ‘none-recall’ should have higher uncertainty. In generally, the samples 

in ‘none-recall’ and ‘lower-recall’ are relatively less, thus should have higher di-versity based on the Eq. (12). 

Therefore, according to the Eq. (13), the samples in ‘mismatching’ and ‘none-recall’ are usually the most 

informative samples. 

We conduct a set of experiments to verify our proposed infor-mativeness query algorithm. We employ 

the FCN with focal loss trained on the initial annotated samples as the initial model, then generate a set of 

heatmaps of the initial unannotated samples. Certainly, the most of initial unannotated samples (i.e., 1,140 in 

1,692) are classified as uninformative samples, which mass lesions are correctly detected with few false positive 

regions. According to the Eq. (13), the ranks of these samples are low. Therefore, we focus on the high rank 

samples (i.e., 552 in 1,692), which can be split into 4 clusters, i.e., 154 samples of ‘mismatch’, 47 samples of 

‘none-recall’, 62 samples of ‘lower-recall’ and 289 samples of ‘over-FP’. Four typical samples from different 

clusters with their heatmaps are illustrated in Fig. 6. 

In order to verify the improvement of model updating by these clusters independently, we select 98 

samples from ‘mismatching’, 39 samples from ‘none-recall’, 55 samples from ‘lower-recall’, 110 samples from 

‘over-FP’, respectively. This selection considers both the uncertainty and the diversity simultaneously, and 

ignores a number of hard samples (i.e., indecipherable samples). These selected samples are manually annotated 

by a group of experi-enced radiologists. Then, we obtain 4 sets, i.e., Active_c1, Active_c2, Active_c3 and 

Active_c4, by adding the newly annotated samples into the initial annotated samples, respectively. We employ 

these 4 sets to update the initial model, respectively. Then, we evaluate the updated models on the test dataset. 

The FROC curves of de-tection results are shown in Fig. 7. Obviously, the updated models on Active_c1 and 

Active_c2 both obtain significant improvement 
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Fig. 6. Four typical samples from different cluster, i.e., ‘mismatch’, ‘none-recall’, ‘lower-recall’ and ‘over-FP’. 

The upper row shows the heatmaps of these samples. The lower row shows the overlays of predicted suspicious 

mass regions and manual annotations on original images. Note that, the orange contours denote the manual 

annotations and the red contours denote the predicted suspicious mass lesions. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Performance comparison between various clusters of informative samples. 

 

than the initial model (i.e., 0.8515 PAUC), where 0.9025 PAUC and 0.9001 PAUC are achieved at the 

same FPI range of [0.5, 2.0], respectively. Therefore, the samples in ‘mismatching’ and ‘none-recall’ are the 

most informative samples. Besides, the updated model on Active_c3 obtains very few improvement than the 

initial model. Interestingly, the updated model on Active_c4 suffers a lit-tle degradation than the initial model. 

Because the added samples from ‘over-FP’ contain several times false positive regions than the suspicious mass 

regions, which aggravate the class imbalance problem. In addition, the false positive regions have high similar-

ity with the suspicious mass regions, and increase the difficulty of learning. 

 

4.4. Evaluations of self-paced sampling algorithm 

As the demonstration in previous experiments, the samples in ‘mismatching’ and ‘none-recall’ are the 

most informative samples. In our learning framework, a number of these most informa-tive samples are selected 

by self-paced sampling. The selected most informative samples are manually annotated and added into the 

annotated samples. The current model is updated using the extended annotated samples in each round. Fig. 8 
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shows the FROC curves of detection results on the test dataset, where Active_r1, Active_r2 and Active_r3 

denote the detection results of three rounds. In the three rounds, we select 137, 27, 18 most in-formative 

samples, respectively. Therefore, 182 most informative samples are selected in total, and 402 samples are 

annotated in total (about 20% of all training data). Our iterative learning frame-work is terminated in the third 

round, because of not enough most informative samples in next round (i.e., less than 2% of the current annotated 

samples). We can observe that a consistent improvement is achieved in each round. At the same FPI range of 

[0.5, 2.0], the updated model on Active_r3 presents the best 0.9220 PAUC and 0.9643 TPR@2.0FPI, as shown 

in Table 1. An-other interesting detail about Fig. 8 is that the updated models on Active_r1, Active_r2 and 

Active_r3 obtain very close performance in the low FPI range (e.g., < 1.2) and relatively large differences in the 

high FPI range. This finding indicates that many illegible mass lesions are recalled in lower thresholds and the 

improvement of subsequent rounds comes from hard samples which masses are embedded inside the dense 

tissues. 

 

4.5. Comparison with the counterparts 

4.5.1. Active learning (AL) 

We employ active learning as the first counterpart, which is the state-of-the-art methods for minimizing the 

annotation 

 

Fig. 8. Performance comparison between the initial model and the updated models in our learning framework. 

 

Table 1 Experimental results of our proposed method and counterparts on test dataset. 

Experiments Name PAUC 

TPR@2.0F

PI Annotated 

    samples 

     

FL vs. CE 

CE 0.8398 0.8780 220 

FL(Baseline

) 0.8515 0.8780 220  

     

 Active_c1 0.9025 0.9315 318 

Evaluations of 

IQA 

Active_c2 0.9001 0.9256 259 

Active_c3 0.8577 0.8899 275  

 Active_c4 0.8315 0.8571 330 

     

 Active_r1 0.8945 0.9077 357 

Ours Active_r2 0.9035 0.9048 384 

 Active_r3 0.9220 0.9643 402 

     

 Ablation_r1 0.8964 0.9196 421 

Active learning 

Ablation_r2 0.8969 0.9345 480 

Ablation_r3 0.9047 0.9405 512  

 Ablation_r4 0.9053 0.9455 540 

     

Random 

learning 

Random_v1 0.8874 0.8989 402 

Random_v2 0.8537 0.8720 402  

     

 

 

efforts. We carry out experiments using the same deep learning model. Specifically, this counterpart 

only employs active learning but not self-paced learning, also termed as ablation counter-part. Therefore, all 

most informative samples are selected in each round. In details, 201, 59, 32, 28 most informative sam-ples are 

annotated and added into the annotated samples in each round. In this way, the FROC curves of detection results 

on the test dataset are shown in Fig. 9, where the rounds of the ablation counterpart are termed Ablation_r1 to 

Ablation_r4. We can observe that the updated model on Ablation_r4 presents the best 0.9053 PAUC and 0.9455 

TPR@2.0FPI, which inferior to our learning framework (i.e., 0.9220 PAUC and 0.9643 TPR@2.0FPI of 

Active_r3). Moreover, the ablation counterpart annotates 540 samples in total, which is more than that of our 
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learning frame-work (i.e., 402 samples). Therefore, the experimental results of the first counterpart suggest that 

our proposed learning frame-work achieves better performance and annotates lesser samples over the state-of-

the-art counterpart. 

 

4.5.2. Random learning (RL) 

We employ random learning (RL) as another counterpart, which uses random query strategy to select 

unannotated samples. The selected samples are annotated and added into the initial annotated samples. Then, the 

extended annotated samples are used to update the initial model. With the same workload of annotation, we 

randomly select 182 samples from the initial unannotated samples for manual annotation. We conduct two 

group of experiments for random learning independently, termed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Experimental results of the active learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Performance comparison between our learning framework and the random learning. 

 

as Random_v1 and Random_v2. The FROC curves of detection results on the test dataset are shown in 

Fig. 10. We can observe that the Random_v1 and Random_v2 obtain 0.8874 PAUC, 0.8989 TPR@2.0FPI and 

0.8537 PAUC, 0.8720 TPR@2.0FPI on the test dataset, respectively. Obviously, our learning framework signif-

icantly outperforms this counterpart. Additionally, the random query strategy is unstable and unreliable, because 

the Random_v1 and Random_v2 have distinct difference. 

 

4.6. Discussion 

Although we have already shown superiority of our proposed method in the experimental results, there are some 

technical essentials need to be discussed. 

The average time of annotating a mammogram is approximate 5 to 10 min. Furthermore, the variation 

of annotations from different radiologists need more time to consult. In our proposed method, the radiologists 

only annotate 402 mammograms out of 1,912 mammograms in training dataset, about 20% of the total training 

dataset. In each round of active learning and self-paced learning, we train the FCN with 7,000 training iterations, 

about 4 h. The prediction time of unannotated samples is much less, e.g., 3 samples per second. As the results, 
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our method is converge in 4 rounds. Therefore, the time cost of our method is much less than that of manually 

annotating all training dataset. 

In machine learning, the validation dataset is used to assist the training by evaluating its periodically in 

the training. Based on the evaluated result on the validation dataset, the training can be early stopped, or the 

model that achieves the best result on the validation dataset is selected. Therefore, the validation dataset is 

involved in the training process, and can restrain the overfitting. However, it is not mandatory in all machine 

learning tasks, espe-cially in the situation of indirect metrics for evaluation [49,50]. In our experiments, the 

FROC curves and the PAUCs are calculated from the heatmaps with unfixed multiple thresholds. In order to 

guarantee the FPI range of [0.5,2.0] in the FROC curves, we need manually adjust the upper bound and lower 

bound of thresholds, thus we cannot automatically calculated the FROC curves and PAUCs of the validation 

dataset in the training process periodi-cally. Therefore, we do not employ the validation dataset in our 

experiments, and we also do not use the test dataset to assist the training as the validation dataset. 

The k-fold cross-validation is very useful in the situation of the dataset with less samples [49]. 

However, we have a large number of samples in our dataset. To perform the k-fold cross-validation, it might 

have to annotate all samples. It is time-consuming and tedious. On the other hand, the main purpose of our 

proposed method is to minimize the number of manual annotation. Besides, the philosophy of self-paced 

learning provides robust learning process for FCN, thus our proposed method can present stable and reliable 

performance as the experimental results. 

Accurately detecting the tiny objects is a challenge task in computer vision. Many popular object 

detection methods, such as Faster RCNN, SSD and YOLO, have this problem. For example, the Faster RCNN 

employs region proposal networks (RPN) to generate region proposals. The RPN locates the key points on the 

small-scale feature maps, and then uses multiple anchor boxes to generate region proposals on the original 

image. The region proposals are used for classification in subsequence, thus the anchor boxes cannot be too 

small. We employ FCN to make spatial density prediction (i.e., heatmap), then use the multiple thresholds to 

find out suspicious lesions. In order to achieve better segmentation contour, the FCN employ skip connections 

to acquire detailed information from low-level large-scale feature maps, which can enhance the recognition 

capability of tiny le-sions. Because the heatmap has same resolution with the original image, the FCN have 

higher detection sensitivity for tiny objects. 

 

Mass embedded inside the dense tissues is the most difficult type (hard example), and the samples of 

this type are relatively less. In our dataset, parts of samples have this issue. Manual annotation for these samples 

is also difficult because the expe-rienced radiologists cannot find out the exact counters of the masses embedded 

inside the dense tissues. To address this issue, our proposed method employs focal loss to perform hard exam-

ple mining. As our experimental results, the focal loss improves the performance. Besides, our proposed method 

employs active learning to preferentially select the informative samples (most of them are hard examples) for 

manual annotation, and employs self-paced learning to provide a robust learning process, i.e., grad-ually 

increase the number of hard examples at the latter round. Therefore, our proposed method is just right to address 

the issue of mass embedded inside the dense tissues. Some examples of dense cases are shown in Fig. 11. 

 

V. CONCLUSION 
This study develops a novel learning framework for breast mass detection that incorporated deep active 

learning (DAL) and self-paced learning (SPL) paradigm. The efficient learning strategy in our proposed learning 

framework can obtain better perfor-mance with minimum annotation efforts. Specifically, we employ focal loss 

in the deep learning model to tackle the class imbalance problem. In order to find out the most informative 

samples, we propose an informativeness query algorithm to rank the large amounts of unannotated samples. 

Then, we propose a self-paced 
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Fig. 11. Some examples of dense cases from our test dataset. The orange contours denote the manual 

annotations (ground truth) and the red contours denote the predicted suspicious mass lesions. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

sampling algorithm to select a number of the most informative samples for manual annotation. The 

experimental results suggest that our proposed learning framework achieves superior perfor-mance over the 

counterparts. Moreover, our proposed learning framework dramatically reduces the requirement of the anno-

tated samples, i.e., about 20% of all training data. In the future work, we will investigate more measurements in 

the sample selection criteria, such as noise level. Besides, we would like to extend this methodology to other 

similar tasks in different imaging modalities, such as pathology and MRI. 
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